4e : test 9 sur l’arithmetique

Un chapitre facile avec très peu de nouvelles notions. En effet, la division euclidienne, les notions de multiples et diviseurs et les nombres premiers ont été vus en 6e pour la plupart (5e pour les nombres premiers). La seule « découverte » cette année correspond à l’algorithme de décomposition d’un nombre premier en relation avec le théorème fondamental de l’arithmétique.

Pour rappel, la division euclidienne est abordée en CM1, toute comme la notion de multiples et diviseurs. Je dirais qu’un quart des élèves ne connaissent toujours pas ces notions et écrivent que les multiples de 10 sont 2, 5… C’est vrai qu’en AP, si certains d’entre vous aviez travaillé, vous auriez dépassé les exercices 2 et 3 p 16 (dont certains n’ont même pas fini le 2 en 55 minutes), vous auriez fait l’exercice 5 p 17… et où l’on demandait les multiples de 8, 10 et 12. Bon nous avions aussi corrigé les exercices 1, 2, 3 et 4 p 11 en cours. On se demande qui fait les exercices en fait ou si vous révisez vraiment.

Il faudrait utiliser les heures d’AP pour progresser, c’est l’intérêt des demi-groupes, pourtant une majorité d’élèves n’y fait pas grand chose. Dommage, c’est fini.

Une première partie donc sans souci mais reste l’éternel problème : les critères de divisibilité. Je vous ai dit que c’était utile, nous les avions révisé (ex 6 et 7). Regardez votre copie, si vous n’avez pas 3/3 ce n’est pas normal.

Un exercice de 6e à la fin, qui bizarrement le réussite mieux le plus souvent, sur une division euclidienne à écrire (ou une division à poser). Je n’ai pas souvent mis des points dessus, c’est vrai, il faut lire et comprendre le français.

Enoncé et corrigé ci-dessous.

Publié dans 4ème, Devoirs | Commentaires fermés sur 4e : test 9 sur l’arithmetique

3e : corrigé des exercices de calcul littéral

Voici l’ensemble des corrigés des exercices, non corrigés en classe, selon le plan de travail donné. Pour rappel, il ne sert à rien de lire les corrigés :

  • lire n’est pas comprendre
  • pour progresser en calcul littéral, il faut pratiquer (comme en musique, les gammes)
  • plus on en fait, plus on progresse et moins on fait d’erreurs de calcul sur les nombres relatifs (qui sont le coeur du calcul littéral une fois acquis la technique de la simple et de la double distributivité)

Attention, je n’ai pas dit de TOUT faire, seul le niveau 2 est exigible. Les corrigés sont longs et peuvent vous faire peur. Faites-les exercice par exercice, écrivez proprement vos calculs, vérifiez chaque étape et validez votre calcul. Ne vous y prenez pas au dernier moment, vous êtes sûrs de ne rien retenir.

Le calcul littéral est un chapitre uniquement technique, pas de réflexion ou de raisonnement, on applique la méthode, étape par étape.

Sachez que ce chapitre est crucial, essentiel… pour ceux qui vont aller en seconde générale car plus des deux tiers du programme en seconde l’utilise. Ne pas savoir manipuler le calcul littéral met en danger votre scolarité mathématique au lycée ! C’est dit, vous pouvez demander à vos camarades, frères et soeurs…

J’ai découpé par compétences.

Publié dans 3ème, Cours, Exercices | Commentaires fermés sur 3e : corrigé des exercices de calcul littéral

3e : correction du test 7 – homothétie et agrandissement- réduction

Voici le corrigé du test sur les homothéties et les agrandissements réductions.

Homothéties : tout le monde arrive à construire une homothétie de rapport k = 2. Par contre, vous ne suivez pas la méthode pour construire celle de rapport k = -0,5, prolonger les droites qui passent par le centre de l’homothétie et prendre la moitié de chaque longueur.

Agrandissement – réduction : ha l’apprentissage du cours, c’est toujours pas ça, ce n’était que de la restitution. Première question de cours sur les transformations des aires et volumes, la seconde en application avec la restitution de

  • la longueur d’un cercle (nom classique du périmètre) : L=2\pi r
  • l’aire d’un disque : A=\pi r^2

La troisième permettait de démontrer le résultat de la multiplication du périmètre et de l’aire d’un cercle (et disque) pour retrouver la multiplication par k et k^2, la dernière question était une application directe, identique à l’exercice 1 et 2 p 67.

En dernière partie, une application de la conservation des angles et de la proportionnalité des longueurs des côtés.

A revoir pour 22 élèves de la classe…

Publié dans 3ème, Au quotidien, Devoirs | Commentaires fermés sur 3e : correction du test 7 – homothétie et agrandissement- réduction

4e : corrigé du DST 3 géométrie et statistiques

Un contrôle bilan sur les connaissances de géométrie et de statistiques :

  • construction de l’image d’une figure par symétrie centrale (niveau 5e) et par translation (niveau 4e)
  • utilisation des triangles semblables
  • statistiques élémentaires de niveau 5e

Bon, c’est la catastrophe avec des moyennes de 6 et de 7,4 dans les classes. Bon, on va le dire tout de suite, non le contrôle n’était pas trop long (vu que dans les copies, on en trouve à peu près le tiers – mal – fait) et n’était pas trop dur (plus qu’un test, mais ça c’est normal).

Exercice 1

Thème : savoir construire l’image d’une symétrie centrale et d’une translation.

La première image est une notion de 5e, revue en 4e dans le cadre de l’AP (où vous avez tout fait pour ne pas les tracer), la seconde est du niveau 4e. Déjà, il vous faut 15 minutes pour tracer les deux figures car vous ne pratiquez pas, vous avez juste survoler vos cours et disant « c’est bon, je sais faire ». En fait, avec une règle et un compas dans les main, vous ne savez pas faire et / ou vous êtes très lents !

Au point de vue technique, depuis le début de l’année, je vous dis qu’il ne faut pas tracer de doubles perpendiculaires pour tracer une droite parallèle… vous ne m’écoutez pas, donc j’ai sanctionné toute erreur de parallélisme.

Exercice 2

Thème : problème sur les triangles semblables (indiqué comme le plus compliqué lors de la lecture de l’énoncé)

Les questions étaient indépendantes, beaucoup d’entre vous n’ont pas su / vu la première question qui était de tracer un parallélogramme (quelconque si l’on peut dire). Beaucoup d’erreurs de nommage, on se retrouve avec des parallélogrammes notés ABDC… C’est plus dur après pour comprendre les questions. Certains ne lisent pas qu’il ne faut pas tracer un parallélogramme particulier comme un rectangle ou un losange sinon, on ne peut plus « voir » comment démonter.

Première question : connaitre les propriétés des parallélogrammes dont l’égalité des mesures des angles opposés (he oui, on utilise les propriétés de 5e…)

Seconde question : mise en place d’angles alternes-internes en citant les droites parallèles, la sécante, la propriété et finir par conclure.

Dernière question : la plus simple, écrire les deux égalités obtenues précédemment et donner la définition des triangles semblables pour conclure !

Les questions 1, 3 et 4 étaient du même niveau que les exercices faits en classe, seule la seconde nécessitaient d’avoir intégrer la propriété des parallélogrammes qui avait été revue dans le cadre d’un exercice en classe.

Exercice 3 :

Thème : application directe des triangles semblables

Ultra-simple, très guidé (j’ai rajouté des questions par rapport à l’énoncé du Transmaths), avec juste une application de la définition dans la première question (2 paires d’angles de même mesure), compléter le tableau du cours avec la méthode de la flèche (une bonne réponse je crois) tout en évitant d’écrire n’importe quoi dans les notations (sanctionné) puis faire un calcul classique de la longueur à partir de la proportionnalité, en oubliant pas de citer la propriétés des triangles semblables et d’écrire l’égalité des rapports (allez voir dans vos exercices corrigés – ha non, en fait, vous ne prenez pas la correction).

Exercice 4 :

Thème : statistiques niveau 5e (j’ai d’ailleurs repris l’énoncé d’un des mes contrôles de 5e)

Lire un graphique, calculer un effectif total, calculer une fréquence sous trois forme : fraction, décimal et pourcentage. Certains n’ont toujours pas compris que l’on ne multipliait pas par 100 pour obtenir le pourcentage, c’est pourtant écrit dans le cours, noté dans les exercices, j’ai donné des contre-exemples… c’est une écriture fractionnaire de dénominateur 100 !!!

Au total, un DST qui vient de percuter le mur, c’était prévisible, dû à un manque d’apprentissage du cours et une maitrise très lointaine du cours. J’ai donc pris la liberté le lendemain de poser en 25 minutes un contrôle uniquement sur les définitions et les propriétés utilisées dans le contrôle : la base, ce qu’il fallait maitriser pour venir en contrôle, de manière parfaite. Cela ne permettait pas d’avoir 20 au contrôle, mais facilement entre 12 et 14 sans avoir parfaitement tout intégrer… Les notes de ce test et du DST sont les mêmes : 6 et 7,5. Cela traduit le fait que rien n’est maitrisé, compris, tout reste approximatif. Une confusion règne dans les propriétés, les définitions et les démarches. Rien n’est acquis ni consolidé car rien n’est révisé : j’ai pris la liberté de demander ce que vous aviez révisé pour le contrôle, le temps, les documents… je n’ai pas été déçu. Je tiens à disposition des parents intéressés cette partie que n’est pas sur la copie mais dont j’ai gardé la trace. Très instructif.

Pour réussir en maths, il faut travailler : en classe (écouter, se concentrer, répondre, participer, prendre la correction des exercices même si l’on pense que l’on a une bonne réponse – a-t-on la bonne démarche ? -), et à la maison, on apprend ses définitions, ses propriétés, on les révise de temps en temps et on ne s’y prend pas à la dernière minute pour réviser une DST. Pour un contrôle de ce type, il faut au moins compter 2h par chapitre, car certains sont loins (septembre) donc il faut réactiver la mémoire. Il faut également retravailler ses contrôles quand vous avez vos copies, la ranger et ne pas la lire ne sert à rien, car vous n’avez toujours pas appris de vos erreurs.

Trois points pour conclure comme je vous l’ai dit :

  • il faut parler français dans une copie, une phrase commence par une majuscule, finit par un point et veut dire quelque chose. Je suis désolé mais dans plus de la moitié de copies, c’est déplorable (et je ne juge pas le nombre de fautes d’orthographe), le vocabulaire n’est pas retenu.
  • En géométrie, on utilise des notations vues en 6e pour différencier des objets (segments, droites, longueurs…), c’est la syntaxe. Vous n’avez jamais fait l’effort de la mettre en pratique malgré les rappels, les contrôles depuis la 6e, maintenant, je sanctionne votre mauvaise volonté. Ce que vous écrivez ne veut rien dire, donc c’est noté tel quel.
  • en mathématiques, on ne jette pas un calcul ou des morceaux de calcul en se disant c’est bon, même pour un 6e, on lui apprend que c’est faux. On nomme les calculs, on utilise les lettres de l’énoncé pour indiquer ce que l’on calcule… c’est comme si pour chaque objet, vous l’appeliez « truc » à la place de son nom.

IL FAUT REAGIR ET ARRETER DE SE REGARDER LE NOMBRIL !

Publié dans 4ème, Devoirs | Commentaires fermés sur 4e : corrigé du DST 3 géométrie et statistiques

3e : corrigé du test 6 sur les isométries (symétries, translation, rotation)

Voici le corrigé, sur la première partie du cours, les isométries : symétries, translation, rotation. Deux compétences à restituer, l’étude d’un pavage et la construction de la rotation et de la translation.

Publié dans 3ème, Devoirs | Commentaires fermés sur 3e : corrigé du test 6 sur les isométries (symétries, translation, rotation)

4e : corrigé du test 8 sur la simple distributivité

Un test de méthode et d’application. Certains ont bien écouté et ont refait des calculs avant le contrôle, d’autres non…

Pour information, sur internet, il y a plein de sites en lignes permettant de réviser, comme par exemple https://www.mathix.org/exerciseur_calcul_litteral/

Publié dans 4ème, Devoirs | Commentaires fermés sur 4e : corrigé du test 8 sur la simple distributivité

3e : corrigé du DM de Noël

Voici le corrigé, dans l’ensemble vos constructions étaient très bien, vous semblez comprendre les méthodes de construction des symétries, rotations et translations.

Il ne reste plus qu’à faire la même chose la semaine prochaine.

Publié dans 3ème, Devoirs | Commentaires fermés sur 3e : corrigé du DM de Noël

Bonne année 2021

En espérant qu’elle soit bien meilleure et plus « simple » que l’année 2020 ! Bonne année et surtout bonne santé à tous.

Publié dans Au quotidien | Commentaires fermés sur Bonne année 2021

OTDJZC STJQ RFYMJRFYNVZJX (code de César à déterminer !)

Publié dans Au quotidien | Commentaires fermés sur OTDJZC STJQ RFYMJRFYNVZJX (code de César à déterminer !)

3e : corrigé du test 5 Arithmétique

Voici le corrigé du test 5. Les résultats ne sont pas à la hauteur du niveau attendu. Celui-ci n’était pas très compliqué, avec beaucoup d’applications directes du cours et des exercices du fichier.

Il serait bon d’apprendre le vocabulaire vu en 6ème, 5ème et 4ème sur la divisibilité euclidienne, les diviseurs et les multiples… Déjà dans le devoir commun ce n’était pas terrible, mais à nouveau le cours n’avait pas été étudié.

Quelques points:

  • attention à décomposer avec des nombres premiers et si possible, faites le par ordre croissant
  • revoir la méthode de calcul de PGCD et de PPCM avec l’aide de la décomposition, c’est plus rapide et systématique
  • bien répondre aussi à la question posée (certains sont spécialistes de la non réponse)
Publié dans 3ème, Devoirs | Commentaires fermés sur 3e : corrigé du test 5 Arithmétique